SkyNano

SkyNano

Brief Company/Project Description

Development of an electrochemical advanced manufacturing technique for the production of low-cost carbon nanotubes from carbon dioxide

Carbon nanotubes have long been touted as the supermaterial that would change the world, with applications ranging from energy, electronics, automotive, aerospace, and medical. However, they have thus far achieved limited commercial success due to their high price, which is a result of the energy intensive limited-scale manufacturing methods currently deployed, which often have environmentally harmful by-products.

SkyNano has developed an electrochemical manufacturing technology to produce carbon nanotubes in a scalable ambient pressure system, and uses only inputs of CO2 and electricity, resulting in low operating expenses and no toxic by-products. This technology will enable new products and applications due to the low-cost and scalable nature of the technology.

We Are Looking For

  • Team members
  • Mentors
  • Commercial partnerships with carbon nanotube device integrators

Critical Need for This Technology

Many technological innovations such as better batteries, stronger and lighter-weight materials for building, auto, and aero applications, and next-generation electronics rely on advanced materials such as carbon nanotubes which are currently too expensive for most applications.

Supplemental Needs for This Technology

The cost and practicality of carbon dioxide conversion relies on the ability to produce high value secondary products from carbon dioxide, which is enabled by conversion to technologically valuable materials such as carbon nanotubes.

Competition

Other carbon nanotube manufacturers

SkyNano advantage: low capital expenses, low operating expenses, no toxic by-products, simple feedstock and inputs: electricity and CO2

Other advanced materials such as graphene

SkyNano advantage: Carbon naontubes have been researched for the past 2 decades, and despite their high cost bottlenecking commercial success, the materials have already been developed into many applications by both commercial and academic sectors.  SkyNano’s technology will allow these applications to reach the market through economic feasibility enabled by our low cost manufacturing technology.

Potential Market

  • Energy: batteries, supercapacitors, transparent conductors for PVs
  • Electronics: transparent conductors for touch screens, transistors
  • Aerospace: de-icing coatings, EMI shielding, high strength composites

Key Innovation

Development of an electrochemical manufacturing technique for the production of carbon-based nanomaterials using carbon dioxide and electricity to enable low-cost and sustainable manufacturing of advanced carbon materials for a variety of applications.

R&D Status of Product

Proof of concept demonstration for growth of multi-walled carbon nanotubes at Vanderbilt University and basic understanding of how catalysts influence resulting carbon nanotube structures.  The next step is to apply this understanding to make controlled small diameter catalysts for single-walled carbon nanotube growth.

Team Overview

  • Anna Douglas - Chief Executive Officer (PhD candidate in Interdisciplinary Material Science at Vanderbilt University, BS in Chemistry and Mathematics from Lee University)
  • Cary Pint - Chief Technology Officer (PhD in Applied Physics from Rice University)

Advisors

Dr. Dave Geohegan, Dr. Gyula Eres, James Staargaard, Dr. Marie Thursby, Dr. Michael Meador, Lynn Youngs, Dr. Gary Rawlings

Background Resources

"Sustainable Capture and Conversion of Carbon Dioxide into Valuable Multiwalled Carbon Nanotubes Using Metal Scrap Materials." A Douglas, N Muralidharan, R Carter, CL Pint, ACS Sustainable Chemistry & Engineering 5 (8), 7104-7110

"Iron catalyzed growth of crystalline multi-walled carbon nanotubes from ambient carbon dioxide mediated by molten carbonates." A Douglas, R Carter, N Muralidharan, L Oakes, CL Pint, Carbon 116, 572-578

"Electrochemical Growth of Carbon Nanotubes and Graphene from Ambient Carbon Dioxide: Synergy with Conventional Gas-Phase Growth Mechanisms." A Douglas, CL Pint, ECS Journal of Solid State Science and Technology 6 (6), M3084-M3089

Company Profile

  • Total Amount Raised: $630,000<>/li>
  • Status: Private
  • Year Founded: 2017
  • Patents: 1 PCT filed with Vanderbilt University
  • Primary Industry: Advanced Materials Manufacturing
  • Category: Carbon Nanotubes
  • Estimated Annual Revenue: Pre-revenue
  • Employs: 2
  • Social Challenge: Low cost sustainable manufacturing to enable technological applications
  • R&D commercial collaborator: Currently seeking commercial collaborators